
Krome School 2014: Exercises
17-19 September

KROME Team

KROME Team Krome School 2014 Exercises Problem 1

Problem 1

Simple chemical network and heating function

The aim of this exercise is to introduce the participant to the use of the chemical network file that represents

the input of KROME. We strongly recommend to use the flag -pedantic (which enable a pedantic Makefile)

during the whole exercise in order to avoid bad surprises. The pedantic Makefile enables a -O0 compilation

and includes compiler flags to trap common bugs. Add -useN to run in number density.

Part 1: Preparing the chemical network

We want to study the evolution of a simple chemical network with a few reactions, namely

1. H2 + CR → H+
2 + e−

2. H2 + H+
2 → H+

3 + H

3. H+
3 + CO → HCO+ + H2

The rate coefficient for the first reaction is 7×10−17 s−1, while for the other two reactions is 10−9 cm3 s−1.

Prepare the chemical network using different @format tokens to avoid blank parts.

Part 1 A: Writing the code

Use the code template test.f90 provided and build the rest.

Initial conditions are: nH2
= 104 cm−3, nCO = 10−4 nH2

cm−3, and all the other species are 10−40 cm−3.

Since the reaction rate coefficients are temperature independent, Tgas can be any temperature, we have

adopt 300 K (it will be useful later). Evolve the system for 1010 yr, with increasing time-step (e.g. from

dt= 10−6 yr increasing by 1.1 times every loop, i.e. dt = dt*1.1).

Note: a useful common variable is spy=krome seconds per year.

Part 1 B: plot the results

Plot the time evolution of CO, H+
2 , H+

3 , and H2. Gnuplot users should employ the variables contained in

the species.gps file.

Part 1 C: Print the flux

Print the flux of the reactions at approximately t = 106 yr using the krome print best flux subroutine (if

needed, see suggested pseudocode below). Employ the list user functions.py utility in the build folder to

obtain the arguments of the interface of the function.

[Type python list user function.py and grep some text from the function.]

Solution The results at 106 yr should look like this:

2 H2 + H2+ -> H3+ + H 0.69691245E-12

1 H2 -> H2+ + E 0.69691245E-12

Problem 1 continued on next page. . . 2

KROME Team Krome School 2014 Exercises Problem 1 (continued)

1: if t>=106*krome seconds per year and boolean then

2: print flux

3: boolean = .false.

4: end if

Algorithm 1: print flux pseudo-code

Part 2: Expand the network

Add now an additional reaction

HCO+ + H2 → H+
3 + CO

with a rate coefficient of α×3.88×10−10 cm3 s−1, where α is a free parameter.

Check what happen to the evolution when α changes to 10−5, 10−2, and 1 using the token @common.

You have to re-run the KROME pre-processor, so the option -noExample should be useful to avoid a

replacement of test.f90.

To initialize the variable use the subroutine krome set user alpha(argument). Plot the same species as in

the Part 1.

Part 3: Heating from CRs

Add heating from cosmic rays, considering that the first reaction is a CR ionization. Use the tokens

@CR begin and @CR end.

3

KROME Team Krome School 2014 Exercises Problem 2

Problem 2

Advanced cooling functions and LAMDA database

This exercise shows how to use the custom cooling functions. We strongly recommend to use the flag - pedan-

tic during the whole exercise in order to avoid bad surprises. Moreover, add -useN to run in number density.

Part 1: Preparing the chemical network

The backbone of the network (network start) is provided. The main problem here is to add a custom function

for CO from the equations in the file CO appendix.ps in the exercise folder. Take a look at the CO rotational

cooling considering the collisions with H2 as described in eqn.A25 (page 146) in the attached file. For the

sake of simplicity we provide the equations translated in F90 (see provided file code block):

ntot = get_Hnuclei(n(:))

na = 0.5d0*([total amount of H]+1.414d0*[total amount of H2])

ncr = 3.3d6*(Tgas*1d-3)**0.75

speed = sqrt(kvgas_erg/2d0)

factCO = 1d0 + na/ncr + 1.5d0*(na/ncr)**0.5

sigma = 3d-16*(Tgas*1d-3)**(-0.25)

!total cooling

ntot*(boltzmann_erg*Tgas)*sigma*speed*[total amount of CO]/factCO

Note that some parts between square brackets should be replaced with an appropriate expression. To do this

it is important to remark that the internal array for the species is n(:), and the internal indexes for species

are without the krome prefix, so for example HCO has idx HCO instead of krome idx HCO. Note also that

the variables should be indicated with the token @var, and that the total cooling uses @cooling token. Do

not forget to define the block using @cooling start and @cooling stop. For instance

@cooling_start

@var: your variable

@cooling: your cooling function

@cooling_stop

Part 1 A: Writing the code

In this exercise the output of the code should be the amount of cooling in erg cm−3 s−1 at different tem-

peratures considering the chemical equilibrium. To do this you should write a loop on Tgas in the range

10-104 K, with jmax=100 logarithmic steps, for example

do j=1,jmax

Tgas = 1d1**((j-1)*(4d0-1d0)/(jmax-1)+1d0)

...

end do

The total density of H is 106 cm−3, while the other species are defined through the metallicity Z = −1

by employing the function krome scale Z. To check its arguments run the list user functions.py utility (you

already know how to use it).

Problem 2 continued on next page. . . 4

KROME Team Krome School 2014 Exercises Problem 2 (continued)

Now that you have rescaled the metals you should find chemical equilibrium. For this you should turn off

the thermal evaluation by using

call krome thermo OFF()

that needs the -useThermoToggle flag when you run KROME. This feature switches off the cooling and

solves only the differential equations for the chemical species: in this way you will find the equilibrium at

constant temperature.

Then you can integrate KROME for a long time, let’s say dt=108 yrs

call krome(x(:),Tgas,dt)

This is enough time for this network to reach a steady state equilibrium.

Finally you want to write the cooling function into a file. For this purpose use the krome get cooling array

that returns an array of size krome ncools, containing the cooling functions. The position in the array is

krome idx cool custom. Since this chemical network contains reactions involving cosmic-rays, somewhere in

the test.f90 (before the call to KROME) you need to add the cosmic-rays initialization (to ζCR = 1.3× 10−17

s−1), namely

call krome set user crate(1.3d-17)

Part 1 B: Running KROME

Now it is time to run KROME. Use the appropriate flags indicated above and marked in boldface.

Use -noExample to avoid to replace the test.f90 file just prepared. Once compiled and run, display the

results in a plot showing the cooling function vs Tgas.

Part 1 C: Plot chemistry

Plot the chemical abundances of CO, H, H2, and compare them to the results obtained from Part 1 B (i.e.,

the cooling function). This is useful to understand the importance of the single cooling functions over time.

Part 1 D: Compare cooling functions

Compare the cooling from CO employed above with the cooling from H2. You should re-run KROME with

the option which enables H2 cooling (-noExample is your friend, you don’t want to re-write your test.f90!).

Note: krome idx cool H2 is the position of the cooling function in the array.

Part 2: Compare the cooling with LAMDA data (optional)

We now want to compare the approximate CO cooling employed in the previous test with the results ob-

tained by using the cooling from the LAMDA database. To do this add the following option

-coolFile=”tools/coolCO.dat”

to indicate that KROME should take into account the molecular transitions data from that file. If you want

to check the availability of the cooling function just add

-cooling=?

Problem 2 continued on next page. . . 5

KROME Team Krome School 2014 Exercises Problem 2 (continued)

and run KROME. A list of the cooling functions will be provided, including the new one found in the data

file above. Replace ”?” with CO. To reduce the computational cost (and the compiling time) reduce the

number of CO rotational lines using -coolLevels=32 and run KROME again (-noExample is your friend

again).

Now with the same method used in Part 1 compare the two cooling functions, remembering that in KROME

any cooling from a data file has an index equal to the integer variable krome idx cool Z.

6

KROME Team Krome School 2014 Exercises Problem 3

Problem 3

The aim of this exercise is to explain how bin-based photochemistry works in KROME. In order to do this

we model a 1D Strömgren sphere, i.e. the evolution of a ionization front. As usual do not forget to put

-pedantic for a safer test, as well as the -useN option. This test will take about one minute to run, if you

want to speed-up remove the -pedantic option.

Part 1: The physics

We want to understand what happens when a stellar source is embedded in a cloud of gas with constant

density ntot = 10−3 cm−3. The temperature of the star is 30,000 K to mimic a B0 star, while its radius

is taken to be R?=66.1 R� (R�=7×1010 cm) to ensure an emission of ∼5×1048 photons per second. The

emission is isotropic and follows a black-body (BB) spectrum. To ensure the correct number of photons use

an energy range between 13.6 and 13.8 eV. The box of the simulation is L = 6.6 kpc (1 pc=3.085×1018 cm)

and we will divide it into a linearly equally-spaced grid with ngrid=300 points, e.g.

r = (i-1)*(rmax-rmin)/(ngrid-1) + rmin

You can set the first point at 1 pc. This grid is represented by a 2-dimensional array that contains the

chemical species at each grid point, e.g. xall(ngrid, krome nmols). The initial conditions are Tgas=104 K,

and nH = ntot, nH+ = ne− = 1.2×10−3 ntot.

To simplify the exercise we use an explicit solver and provide a test.f90 template. The backbone of the solver

is a loop on grid points nested in a loop on time as:

dt = 0.1 yr

LOOP time

dt = dt * 1.01

t = t + dt

LOOP grid for i

x(:) = xall(i,:)

call KROME(x(:),Tgas,dt)

xall(i,:) = x(:)

END LOOP grid

if(t>tmax) break loop on time

END LOOP time

Part 1 A: The chemical network

The chemical network is initially based only on the recombination rate:

H+ + e− → H + γ

with the rate coefficient 2.59×10−13(104/Tgas)
0.7 cm3s−1. Without any radiation the gas will recombine,

verify it plotting the radial profile of H and H+ at t ∼tmax = 30 Myr.

Part 1 B: Adding photochemistry

Now we want to add the radiation and the photoionization process

H + γ → H+ + e−

In this case KROME can take the cross section from its internal database. Just specify ”auto” as the reaction

rate in the network file. Do not forget to indicate that the rate is a photorate, using the token @photo start

and @photo end.

Problem 3 continued on next page. . . 7

KROME Team Krome School 2014 Exercises Problem 3 (continued)

As an example

@photo_start

1,R,P,P,auto

@photo_end

To add the photochemistry to KROME first run it using -photoBins=1 to specify that you are interested in

just one bin of monochromatic radiation. KROME will enable all the machinery for handling photochemistry.

In the test.f90 file you should consider an emitting BB source at Tbb = T?. KROME has several functions in

the module krome user. For a BB you can use the subroutine krome set photoBin BBlog. Check the list of

functions (you should know how to do) to see which arguments you need. Decide a narrow energy interval

around 13.6 eV to mimic monochrome radiation at the Lyman edge. In this way you are telling KROME

what energy you are using.

It is now time to rescale the energy according to the distance r, using krome photoBin scale. The scaling

factor is 1
4ππ(R?

r)2. The variable 1
4π is used to cope with the internal 4π factor that assume isotropic radia-

tion to compute the photoionization cross sections.

We are considering here an optically thin case! Run the model and plot the radial profile (linear-log).

Part 2: Optically thick case

Now the tricky part.

When a photon reaches the grid point N it has a non-zero probability of being stopped by the previous

N − 1 volumes of gas. Namely: the optical depth. For this reason at each grid point you should take into

account the ”history” of the radiation from the star’s surface to the grid point N .

The function krome get opacity size returns an array of size krome nmols that contains the optical depth

(i.e. τ) for each frequency bin. The arguments include the size of the crossed gas volume (i.e. the size of the

grid cell, ri − ri−1). For each grid point, store this in a bi-dimensional array (that should be defined!) as

opt(ngrid,krome_nPhotoBins)

The optical depth for the i-th grid point is then

do j=1,krome_nPhotoBins

op(j) = product(exp(-opt(1:i,j)))

end do

Now you can rescale the flux by

op(:)*(1/4*pi)*pi*(Rstar/r)**2

using this time the function krome photoBin scale array instead of krome photoBin scale (since you want to

do it bin by bin).

Plot the radial profile at tend ∼30 Myr and tend ∼500 Myr. Compare your results with the figure below (i.e.

Fig. 8 of Iliev+2006).

Problem 3 continued on next page. . . 8

KROME Team Krome School 2014 Exercises Problem 3 (continued)

9

KROME Team Krome School 2014 Exercises Problem 4

Problem 4

Surface reactions with size-dependent dust modelling

The aim of this exercise is to understand how the size-bin-based dust distribution works in KROME. To

do this we will implement a chemical network on the dust surface. The difficulty of this exercise is that

some of the reaction rates depend on the size of the dust, and hence you need to write them accord-

ing to the way KROME handles the dust bins. The equations sketched here below are from Dulieu+2013

(http://adsabs.harvard.edu/abs/2013NatSR...3E1338D) and Hocuk+2014 (http://arxiv.org/abs/1408.5029).

Recap on dust variables:

boltzmann_erg, Boltzmann constant, erg/K (included in krome_constants module)

ndust, size of the dust array

xdust(:), dust abundances (array of size ndust, cm−3)

krome_dust_asize(:), size of the dust (array of size ndust, cm)

krome_dust_asize2(:), square of the size (array of size ndust, cm2)

krome_dust_T(:), dust temperature (array of size ndust, K)

Part 1 A: The chemical network

The initial network here is rather simple. It is based on 2 reactions. The first is a gas→gas process, while

the second is a gas→dust process (adsorption, or shortly process A):

1. O + O → O2 rate1=4.9×10−20(Tgas/300)1.58

2. O → Odust rate2=see below

The first rate coefficient is indicated in the list above, while the second for the jth reactant (in our case just

oxygen) is

kads,j = vj
∑
i

xd,iπa
2
i S(Tgas, Tdust,i) , (1)

where vj =
√

8kbTgas/π/mj , xd,i is the amount of dust in the ith bin, ai the size of the ith bin, and S is the

sticking coefficient defined by

S(Tgas, Tdust,i) =

(
1 + 0.4

(
Tgas + Tdust,i

100

)0.5

+ 0.2
Tgas
100

+ 0.08

(
Tgas
100

)2
)−1

. (2)

In the network file the processes A (O→Odust) should look like this:

2,O,O_dust,fA(m(idx_O),Tgas)

where fA is a custom function and m(idx_O) is the mass of oxygen in grams. The custom function fA will

be prepared later.

To get the array containing the masses of the species in grams write in your network file the following

statement

@var:[nspec] m = get_mass()

where nspec (i.e. the total number of species) is the size of the array m(:).

Part 1 A: Run KROME

Once you wrote the two-reactions chemical network, run ./krome with -useN option for the number density

interface, -pedantic to trap problems, and then set 10 dust bins, together with the dust type (carbon-based).

Problem 4 continued on next page. . . 10

KROME Team Krome School 2014 Exercises Problem 4 (continued)

To do this use -dust option (check the help, ./krome -h, to understand how).

Part 1 B: Preparing the custom function

We did not write the custom function fA yet. We suggest to use the krome_user_commons module to provide

this function. For example the function for adsorption could be something like the following pseudocode:

function fA(mass,Tgas)

use krome_commons

use krome_constants

rate = 0

vx = compute thermal speed using the mass variable

LOOP on dust bins

stick = equation for stick using krome_dust_T array

rate = rate + expression that depends on krome_dust_asize2 and xdust arrays

END LOOP

fA = rate

end function

Some useful information:

1. constants stored in the module krome_constants are without the krome_ prefix (e.g. pi instead of

krome_pi).

2. the index for a gas species, e.g. CO is krome_idx_CO, while for its counterpart on surface we have

krome_idx_CO_dust.

3. eqn.(2) depends on the Tdust,i, which depends on the bin size.

Part 1 C: The test.f90

This one-zone model (test.f90 file provided) should evolve for 109 years and the initial conditions are

• ntot = 106 cm−3

• nH = ntot

• nO2 = 10−4 nH

• nOdust
= 3× 10−4 nH

• Tgas = 300 K

• Tdust = 30 K

All the other species are set to 10−40. The dust-to-gas ratio is 10−2.

The only thing you need to do now is to add the dust initialization routines by replacing the comments in

the test.f90 file: use krome_set_dust_distribution and krome_scale_dust_gas_ratio. After doing this

compile, run, and plot the time evolution (log-log) for O(gas) and O(dust).

Part 2: Evaporation: introduction

After adsorption we add evaporation (E), which is the opposite process.

This process needs another reaction in our chemical network

• Odust → O

Problem 4 continued on next page. . . 11

KROME Team Krome School 2014 Exercises Problem 4 (continued)

Before discussing the rate coefficients it is better to understand the equations. The machinery is similar to

Part 1 above. The evaporation rate is given by

kevap,j = ν0
∑
i

(
Fbare,i exp

(
−Ebare,j

Td,i

)
+ Fice,i exp

(
−Eice,j

Td,i

))
s−1, (3)

where the sum runs over the dust bins, and j is the species index (in this case only oxygen). The other

parameters are Ebare,j = Eice,j = 1.7× 103 K, ν0 = 1012 Hz, and

Fice,i = min

[
nH2Odust

φi
, 1

]
. (4)

The bare fraction of the dust is obtained by

Fbare,i = 1−Fice,i (5)

and

φi = πa2i
4

a2pp
xdusti , (6)

where app = 3×10−8 cm. Note here that Eqn.(6) depends on ai, which is bin-based.

Part 2 A: Preparing the network and the custom reaction

In the network add evaporation (Odust → O) as

3,O_dust,O,fevap(1700d0, 1700d0, n(idx_H2O_dust))

For this exercise we assume that the numerator of Eqn.(4) - density of water on dust - is constant (nH2O dust

= 1), hence set x(krome_idx_H2O_dust) = 1d0 in the test.f90 file. In the krome_user_commons module

add the code using this pseudocode as template:

function fevap(Ebare,Eice,nH2O_dust)

use krome_commons

use krome_constants

rate = 0e0

LOOP on dust bins

phi = expression that depends on krome_dust_size

Fice = min(nH2O_dust / phi, 1)

Fbare = 1 - Fice

rate = rate + expression that depends on krome_dust_T array

END LOOP

fevap=rate

end function

12

