Using KROME on-the-fly and as a postprocessing tool for star formation simulations

Daniel Seifried

I. Physikalisches Institut, University of Cologne

KROME Computational school 18.9.2014, Göttingen

Chemistry in present day SF

- Heard about chemistry in simulation of POPIII star formation (e.g. talk by D. Schleicher
 - "Relatively" simple: includes only light atoms, (almost) no metals
 - Computational costs are moderate
 - Applied many times in the past
- For present day star formation (SF) metals + dust chemistry have to be included
- This makes chemistry unproportionally more expensive
 - Number of rate equations could be up to N^2 (N = number of species)
 - reduction due to selection of most important reactions
- Even for the most abundant (and simple) molecule CO
 - ~ 40 species
 - ~ 300 reaction

FLASH code

- Astrophysical code to simulate 3D, magneto-hydrodynamical problems
- Uses Adaptive-Mesh-Refinement to resolve regions of interest with higher spatial resolution
- Block structure: Simulation domain divided in blocks/patches consisting of 8³ cells
 - A block resides completely on one CPU (reduced communication)
 - Each block can be divided into 8 smaller blocks with half the linear size
- FLASH is designed in a modular fashion:
 - Each module covers a certain physical process
 - Modules can be used individually or in combination

FLASH modules

- Self-gravity:
 - Multigrid
 - Tree-code (by Richard Wünsch, usually faster by a factor of a few)
- Sink particles
 - Lagrangian particles accreting/ejecting mass
 - Interacting only gravitationally with gas
- Stellar feedback models (coupled to sinks)
 - Protostellar outflows, supernovae, stellar winds
- Radiative feedback of ionising and non-ionising radiation (optically thin gas)
- Tree-Col: for (self-) shielding of jonising radiation

Tree-Col

- Tree-Col developed by P. Clark and R. Wünsch (Clark et al., 2012):
 - Calculates the mean optical depth / column density for each cell
- Makes use of the Healpix tool:
 - Divides sphere in regions of equal size
 - Calculates column density along each direction
 - Averages over all directions
 - Usually already 12 pixels are sufficient to recieve accuracy of 10%

Picture taken from http://healpix.jpl.nasa.gov/

 Column density is essential for many chemical rates to obtain proper ionisation rates by incident radiation

Star formation in interstellar filaments

- Filaments seem to be everywhere: "Filamentology"
- SF takes places in dense cores lining up along filaments
- Typical properties:
 - width of 0.1 pc
 - pervaded by magnetic fields
 - flat inner part, at larger distances density falls off as r^-2

Arzoumanian et al. 2011

Star formation in interstellar filaments

- Open questions:
 - How are filaments formed (not covered here)?
 - What sets the fragmentation of filaments?
 - Where and at which rate does SF take place?
 - How do simulated filaments appear in observations (dust + molecular line emission)
 - needs information about chemical abundances (KROME)!
- We plan to tackle the last three questions (although not in detail this talk)

Simulation setup

- Initial conditions (from observation):
 - Mass per length: 25 and 75 M_{sun}/pc
 - Central density of $\sim 10^{-19}$ g/cm⁻³, T = 15K
 - Without and with magnetic fields
 - Perpendicular and parallel to filaments, strength: 40 muG
 - Turbulent motions with M_{rms} ~ 1
 - Width ~ 0.1 pc, length 1.6 pc

Physics I chemistry applied

- Run with FLASH4, using
 - (sink particles, not yet, but applicable without any further modifications)
 - Spatial resolution of 40 AU
 - Self-gravity
- Aim: Following SF process over ~ 100 kyr 200 kyr
- As a reference run: simulations without chemistry, isothermal EOS
- Including chemistry: KROME network for CO formation
- We use the react_COthin network

Chemistry

- Starting with ionized carbon (CII)
- 42 species, 278 reactions, including CO, HCO+, H₂O
- H₂ formation on dust in parametrised form, dust temperature set to 10 K
 - call krome_set_user_Tdust(10.)
- Ionisation by incident radiation (CR), ionisation rate set to $1.3 \cdot 10^{-17} \, \text{s}^{-1}$
 - call krome_set_user_crate(1.3e-17)
- KROME Heating and cooling mechanism:
 - -cooling H2, CHEM, CIE, CI, CII, OI, OII, SiI, SiII
 - -heating CHEM, PHOTODUST, (CR could be included)
- As well as own defined dust cooling
 - Goldsmith ApJ 557, Eq. 15
 - Does not require the usage of dust within KROME (memory saving)
 - Similar to KROME method, but integrated over dust particles sizes

What about the ionising radiation?

- We do not use Tree-Col, but a simplified analytical proxy for the column density \sum / extinction Av
- Consider a cylindrical symmetric setup

- Consider 6 rays: 2 parallel to axis, 2 "through" axis, 2 "tangential" to structure
- For a given density profile: Σ along each direction can be calculated
 - Use initial density distribution throughout the simulation
 - Final Σ is simply the average of the 6 rays

What about the ionising radiation?

- To set the exctinction: call krome_set_user_Av($_{n}\Sigma$ [1/cm²]" / 1.87d21)
- For the H₂ self-shielding we assume that all hydrogen is in H₂
 - In code adapt: user_H2self = fselfH2($_{,}\Sigma$ [1/cm²]" * 0.5, 1d5)
- Caveats:
 - H₂ self-shielding overestimated
 - No constant density profile over time
 - Average over only 6 directions

- Some technical details
 - Simulation runs on SuperMUC at LRZ/Garching
 - Use of 500 blocks/CPU, standard queue (~ 1.5 GB memory / CPU)
 - Run for 20 h on 240 CPUs for the first 1 Myr, ~ 4800 CPU-h
 - About 4 min for each timestep, ~ 300 steps in total
 - About 8 times slower than without chemistry

Time evolution

- Edge-on collapse, condensations form first at outer parts
- In general for first 1 Myr: evolution similar to reference run without chemistry

Atomic hydrogen

- In dense part: hydrogen almost completely in H2
- Gradial conversion H → H₂ along radial direction

Molecular hydrogen

- Conversion from C⁺ → C
 → CO
 - Blocking of ionising radiation

- Also other more complex species like HCO+ seem to be reproduced reasonable well
- However:
 n(HCO⁺)/n(H2) ~ 10⁻¹¹
- Observations: 10⁻⁹
- Missing something:
 - Larger ionizing flux?
 - Larger network?

Usage of data for line transfer calculations:

- Required for comparison with observations
- Done in a postprocessing step
- CO-channel maps (RADMC-3D) reflect velocity structure

Intermediate summary

- The previous result show that
 - In principle the usage of a complex chemical network is possible "on-thefly"
 - On "normal" machine (memorywise)
 - However, computationally very expensive
 - Reasonable results for most species

- What if we run the simulation without chemistry and apply KROME in a postprocessing step
- Main question 1: how long do we iterate KROME, i.e. for how long do we let the chemical network evolve?
 - Until a chemical equilibrium is reached?
 - As long as simulation has run to that point?
- Main question 2: How to model the thermal gas properties properly?

- We use same network (react_COthin) and same (spatial dependent) proxy for extinction (Av) as before
- No cooling applied, dust and gas temperature set constant during KROME loop
- KROME postprocessing frontend:
 - Read in all data of current snapshot
 - Hand over density, temperature and Av to the main postprocessing routine (here called EquilibriumChemistry.F90)
 - Further parameters:
 - Z (metallicity),
 - dt_start (starting timestep)
 - tmax (time until KROME is iterated)
 - dtmax (optional)

- subroutine EquilibriumChemistry(rho, T, Z, dt_start, tmax, n, ion_rate, opt_depth, dtmax)
- Determine hydrogen density n(idx_H) from rho
- call krome_scale_Z(n,Z)
- n(idx_Cj) = n(idx_C), carbon is ionized rather than neutral
- $n(idx_C) = 1.e-40$
- n(idx_E) = krome_get_electrons(n(:))
- call krome_set_user_crate(ion_rate)
- call krome_set_user_Av(opt_depth)
- call krome_set_user_Tdust(10.)

Main iteration loop

```
dtC= dt_start, ttot = 0
do while(ttot<tmax)
  ttot=ttot+dtC
  call krome(n(:),T,dtC)</pre>
```

Relative changes in abundances:

```
diff(:) = (n(:)-nold(:))/n(:) where(n .eq. 0) diff=0. ! just to avoid infinities and Nans in diff
```

- Next, we check whether we can use a larger timestep in next iteration
- threshold of 0.3 is variable, of course

```
if(maxval(diff) .le. 0.3 .and. minval(diff) .ge. -0.3) dtC=min(2.*dtC,dtmax) nold(:)=n(:)
```

end do

Write out whatever species you like!

- OpenMP parallised around call to EquilibriumChemistry.F90
- First test:
 - For radially average data, i.e. density, temperature as a function of distance from symmetry axis of filament
 - For t_iteration (tmax) = t_sim: agreement within factor of 2
 - Slight dependence of atomic H density on iteration time
 - n(H) decreases at t goes up

- Strong dependence of abundances on integration time
 - Factor of 2 in integration time gives large differences > 10 x
- Integration time is a crucial parameter
- Still: For t_integration = t_sim reasonable agreement

- Another source of error might be the averaging before postprocessing
- Apply postprocessing to "unaveraged" data
- OpenMP parallelised around call to EquilibriumChemistry.F90
- First test:
 - For about 10 Mio cells: about 15 h runtime with 80 threads
 - probably speed up through clever subcycling

Even more complex molecules like HCO⁺ are reproduced well in postprocessing step!

- In general: agreement within a factor of a few for:
 - H,H₂,C,CI,CII,HCO⁺
- in principle KROME as postprocessing tool usable
- But: careful testing required for
 - each network
 - different physical situtations

Conclusions

- KROME can by used "on-the-fly" even with a complex network
 - 40 species, 300 reaction
 - Runs on standard machines with 1.5 GB memory / CPU
 - Slow down by a factor of 8
- Applied to a collapsing filament
 - Come up with a proxy for optical depth
 - Reasonable results for carbon bearing species

Conclusions

- KROME can by used "on-the-fly" even with a complex network
 - 40 species, 300 reaction
 - Runs on standard machines with 1.5 GB memory / CPU
 - Slow down by a factor of 8
- Applied to a collapsing filament
 - Come up with a proxy for optical depth
 - Reasonable results for carbon bearing species
- KROME as a postprocessing tool: it seems to work
 - Iteration time is a critical parameter
 - Reasonable agreement within a factor of 2
 - Check beforehand by means of a reference run
 - Applicability might depend on network

Thank you for your attention!