

Using KROME on-the-fly and as a postprocessing
tool for star formation simulations

Daniel Seifried
I. Physikalisches Institut, University of Cologne

KROME Computational school
18.9.2014, Göttingen

Chemistry in present day SF

 Heard about chemistry in simulation of POPIII star formation (e.g. talk by D.
Schleicher

 „Relatively“ simple: includes only light atoms, (almost) no metals

 Computational costs are moderate

 Applied many times in the past

 For present day star formation (SF) metals + dust chemistry have to be
included

 This makes chemistry unproportionally more expensive

 Number of rate equations could be up to N^2 (N = number of species)

 reduction due to selection of most important reactions

 Even for the most abundant (and simple) molecule CO

 ~ 40 species

 ~ 300 reaction

FLASH code

 Astrophysical code to simulate 3D, magneto-hydrodynamical problems

 Uses Adaptive-Mesh-Refinement to resolve regions of interest with higher
spatial resolution

 Block structure: Simulation domain divided in blocks/patches consisting of
8^3 cells

 A block resides completely on one CPU (reduced communication)

 Each block can be divided into 8 smaller blocks with half the linear size

 FLASH is designed in a modular fashion:

 Each module covers a certain physical process

 Modules can be used individually or in combination

FLASH modules

 Self-gravity:

 Multigrid

 Tree-code (by Richard Wünsch, usually faster by a factor of a few)

 Sink particles

 Lagrangian particles accreting/ejecting mass

 Interacting only gravitationally with gas

 Stellar feedback models (coupled to sinks)

 Protostellar outflows, supernovae, stellar winds

 Radiative feedback of ionising and non-ionising radiation (optically thin gas)

 Tree-Col: for (self-) shielding of ionising radiation

Tree-Col

 Tree-Col developed by P. Clark and R. Wünsch (Clark et al., 2012):

 Calculates the mean optical depth / column density for each cell

 Makes use of the Healpix tool:

 Divides sphere in regions of
equal size

 Calculates column density along
each direction

 Averages over all directions

 Usually already 12 pixels are sufficient
to recieve accuracy of 10%

 Column density is essential for many chemical rates to obtain proper
ionisation rates by incident radiation

Picture taken from http://healpix.jpl.nasa.gov/

http://healpix.jpl.nasa.gov/

Star formation in interstellar
filaments

 Filaments seem to be everywhere: „Filamentology“

 SF takes places in dense cores lining up along filaments

 Typical properties:

 width of 0.1 pc

 pervaded by magnetic fields

 flat inner part, at larger distances density falls off as r^-2

Arzoumanian et al. 2011

Star formation in interstellar
filaments

 Open questions:
 How are filaments formed (not covered here)?

 What sets the fragmentation of filaments?

 Where and at which rate does SF take place?

 How do simulated filaments appear in observations (dust + molecular
line emission)

 → needs information about chemical abundances (KROME)!

 We plan to tackle the last three questions (although not in detail
this talk)

Simulation setup

 Initial conditions (from observation):

 Mass per length: 25 and 75 M
sun

/pc

 Central density of ~ 10-19 g/cm-3 , T = 15K

 Without and with magnetic fields

 Perpendicular and parallel to filaments, strength: 40 muG

 Turbulent motions with M
rms

 ~ 1

 Width ~ 0.1 pc, length 1.6 pc

Physics / chemistry applied

 Run with FLASH4, using

 (sink particles, not yet, but applicable without any further modifications)

 Spatial resolution of 40 AU

 Self-gravity

 Aim: Following SF process over ~ 100 kyr – 200 kyr

 As a reference run: simulations without chemistry, isothermal EOS

 Including chemistry: KROME network for CO formation

 We use the react_COthin network

Chemistry

 Starting with ionized carbon (CII)

 42 species, 278 reactions, including CO, HCO+, H2O

 H2 formation on dust in parametrised form, dust temperature set to 10 K

 call krome_set_user_Tdust(10.)

 Ionisation by incident radiation (CR), ionisation rate set to 1.3 · 10-17 s-1

 call krome_set_user_crate(1.3e-17)

 KROME Heating and cooling mechanism:
 -cooling H2, CHEM, CIE, CI, CII, OI, OII, SiI, SiII

 -heating CHEM, PHOTODUST, (CR could be included)

 As well as own defined dust cooling

 Goldsmith ApJ 557, Eq. 15
 Does not require the usage of dust within KROME (memory saving)
 Similar to KROME method, but integrated over dust particles sizes

What about the ionising radiation?

 We do not use Tree-Col, but a simplified analytical proxy for the column
density ∑ / extinction Av

 Consider a cylindrical symmetric setup

 Consider 6 rays: 2 parallel to axis, 2 „through“ axis, 2 „tangential“ to
structure

 For a given density profile: ∑ along each direction can be calculated
 Use initial density distribution throughout the simulation

 Final ∑ is simply the average of the 6 rays

parallel

through axis

tangential

What about the ionising radiation?

 To set the exctinction: call krome_set_user_Av(„∑ [1/cm2]“ / 1.87d21)

 For the H2 self-shielding we assume that all hydrogen is in H2

 In code adapt: user_H2self = fselfH2(„∑ [1/cm2]“ * 0.5, 1d5)

 Caveats:

 H2 self-shielding overestimated

 No constant density profile over time

 Average over only 6 directions

parallel

through axis

tangential

Results

 Some technical details
 Simulation runs on SuperMUC at LRZ/Garching

 Use of 500 blocks/CPU, standard queue (~ 1.5 GB memory / CPU)

 Run for 20 h on 240 CPUs for the first 1 Myr, ~ 4800 CPU-h

 About 4 min for each timestep, ~ 300 steps in total

 About 8 times slower than without chemistry

Time evolution

 Edge-on collapse, condensations form first at outer parts

 In general for first 1 Myr: evolution similar to reference run
without chemistry

Density Velocity

Results
Molecular hydrogenAtomic hydrogen

 In dense part: hydrogen
almost completely in H2

 Gradial conversion H → H2
along radial direction

 sd






Atomic carbon CO

Ionized carbon, CII

● Conversion from C+ → C
→ CO
● Blocking of ionising radiation

Results
HCO+

 Also other more complex
species like HCO+ seem to be
reproduced reasonable well

 However:
n(HCO+)/n(H2) ~ 10-11

 Observations: 10-9

 Missing something:
 Larger ionizing flux?

 Larger network?

Results

Usage of data for line transfer calculations:
 Required for comparison with observations

 Done in a postprocessing step

 CO-channel maps (RADMC-3D) reflect velocity structure

Intermediate summary

 The previous result show that
 In principle the usage of a complex chemical network is possible „on-the-

fly“

 On „normal“ machine (memorywise)

 However, computationally very expensive

 Reasonable results for most species

Chemistry via Postprocessing

 → What if we run the simulation without chemistry and apply
KROME in a postprocessing step

 Main question 1: how long do we iterate KROME, i.e. for how
long do we let the chemical network evolve?

 Until a chemical equilibrium is reached?

 As long as simulation has run to that point?

 Main question 2: How to model the thermal gas properties
properly?

Chemistry via Postprocessing

 We use same network (react_COthin) and same (spatial
dependent) proxy for extinction (Av) as before

 No cooling applied, dust and gas temperature set constant
during KROME loop

 KROME postprocessing frontend:
 Read in all data of current snapshot

 Hand over density, temperature and Av to the main postprocessing
routine (here called EquilibriumChemistry.F90)

 Further parameters:

 Z (metallicity),
 dt_start (starting timestep)
 tmax (time until KROME is iterated)
 dtmax (optional)

Chemistry via Postprocessing

 subroutine EquilibriumChemistry(rho, T, Z, dt_start, tmax, n, ion_rate,
opt_depth, dtmax)

 Determine hydrogen density n(idx_H) from rho

 call krome_scale_Z(n,Z)

 n(idx_Cj) = n(idx_C) , carbon is ionized rather than neutral

 n(idx_C) = 1.e-40

 n(idx_E) = krome_get_electrons(n(:))

 call krome_set_user_crate(ion_rate)

 call krome_set_user_Av(opt_depth)

 call krome_set_user_Tdust(10.)

Main iteration loop

dtC= dt_start, ttot = 0

do while(ttot<tmax)
 ttot=ttot+dtC

 call krome(n(:),T,dtC)

 Relative changes in abundances:

 diff(:) = (n(:)-nold(:))/n(:)
 where(n .eq. 0) diff=0. ! just to avoid infinities and Nans in diff

 Next, we check whether we can use a larger timestep in next iteration
 threshold of 0.3 is variable, of course

 if(maxval(diff) .le. 0.3 .and. minval(diff) .ge. -0.3) dtC=min(2.*dtC,dtmax)

 nold(:)=n(:)

 end do

 Write out whatever species you like!

Chemistry via Postprocessing

 OpenMP parallised around call to EquilibriumChemistry.F90

 First test:
 For radially average data, i.e. density, temperature as a function of

distance from symmetry axis of filament

 For t_iteration (tmax) = t_sim:
agreement within factor of 2

 Slight dependence of atomic H density
on iteration time

 n(H) decreases at t goes up

Chemistry via Postprocessing

CO atomic C ionized C

 Strong dependence of abundances on integration time
 Factor of 2 in integration time gives large differences > 10 x

 Integration time is a crucial parameter

 Still: For t_integration = t_sim reasonable agreement

Chemistry via Postprocessing

 Another source of error might be the averaging before
postprocessing

 Apply postprocessing to „unaveraged“ data

 OpenMP parallelised around call to EquilibriumChemistry.F90

 First test:
 For about 10 Mio cells: about 15 h runtime with 80 threads

 probably speed up through clever subcycling

Chemistry via Postprocessing

 In general: agreement within a factor of a few for:

 H,H2,C,CI,CII,HCO+

 in principle KROME as postprocessing tool usable

 But: careful testing required for
 each network

 different physical situtations

Even more complex molecules like
HCO+ are reproduced well in
postprocessing step!

Conclusions

 KROME can by used „on-the-fly“ even with a complex network
 40 species, 300 reaction

 Runs on standard machines with 1.5 GB memory / CPU

 Slow down by a factor of 8

 Applied to a collapsing filament
 Come up with a proxy for optical depth

 Reasonable results for carbon bearing species

Conclusions

 KROME can by used „on-the-fly“ even with a complex network
 40 species, 300 reaction

 Runs on standard machines with 1.5 GB memory / CPU

 Slow down by a factor of 8

 Applied to a collapsing filament
 Come up with a proxy for optical depth

 Reasonable results for carbon bearing species

 KROME as a postprocessing tool: it seems to work
 Iteration time is a critical parameter

 Reasonable agreement within a factor of 2

 Check beforehand by means of a reference run

 Applicability might depend on network

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

