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Chemistry in present day SF

 Heard about chemistry in simulation of POPIII star formation (e.g. talk by D. 
Schleicher

 „Relatively“ simple: includes only light atoms, (almost) no metals

 Computational costs are moderate

 Applied many times in the past

 For present day star formation (SF) metals + dust chemistry have to be 
included

 This makes chemistry unproportionally more expensive

 Number of rate equations could be up to N^2 (N = number of species)

 reduction due to selection of most important reactions

 Even for the most abundant (and simple) molecule CO

 ~ 40 species

 ~ 300 reaction 



  

FLASH code

 Astrophysical code to simulate 3D, magneto-hydrodynamical problems

 Uses Adaptive-Mesh-Refinement to resolve regions of interest with higher 
spatial resolution

 Block structure: Simulation domain divided in blocks/patches consisting of 
8^3 cells

 A block resides completely on one CPU (reduced communication)

 Each block can be divided into 8 smaller blocks with half the linear size

 FLASH is designed in a modular fashion:

 Each module covers a certain physical process

 Modules can be used individually or in combination



  

FLASH modules

 Self-gravity:

 Multigrid

 Tree-code (by Richard Wünsch, usually faster by a factor of a few)

 Sink particles

 Lagrangian particles accreting/ejecting mass

 Interacting only gravitationally with gas

 Stellar feedback models (coupled to sinks)

 Protostellar outflows, supernovae, stellar winds

 Radiative feedback of ionising and non-ionising radiation (optically thin gas)

 Tree-Col: for (self-) shielding of ionising radiation



  

Tree-Col

 Tree-Col developed by P. Clark and R. Wünsch (Clark et al., 2012):

 Calculates the mean optical depth / column density for each cell

 Makes use of the Healpix tool:

 Divides sphere in regions of
equal size

 Calculates column density along
each direction

 Averages over all directions

 Usually already 12 pixels are sufficient 
to recieve accuracy of 10%

 Column density is essential for many chemical rates to obtain proper 
ionisation rates by incident radiation 

Picture taken from http://healpix.jpl.nasa.gov/

http://healpix.jpl.nasa.gov/


  

Star formation in interstellar 
filaments

 Filaments seem to be everywhere: „Filamentology“

 SF takes places in dense cores lining up along filaments

 Typical properties:

 width of 0.1 pc

 pervaded by magnetic fields

 flat inner part, at larger distances density falls off as r^-2

Arzoumanian et al. 2011



  

Star formation in interstellar 
filaments

 Open questions:
 How are filaments formed (not covered here)?

 What sets the fragmentation of filaments?

 Where and at which rate does SF take place?

 How do simulated filaments appear in observations (dust + molecular 
line emission) 

 → needs information about chemical abundances (KROME)!

 We plan to tackle the last three questions (although not in detail 
this talk)



  

Simulation setup

 Initial conditions (from observation):

 Mass per length: 25 and 75 M
sun

/pc

 Central density of ~ 10-19 g/cm-3 , T = 15K

 Without and with magnetic fields

 Perpendicular and parallel to filaments, strength: 40 muG

 Turbulent motions with M
rms

 ~ 1

 Width ~ 0.1 pc, length 1.6 pc



  

Physics / chemistry applied

 Run with FLASH4, using 

 (sink particles, not yet, but applicable without any further modifications)

 Spatial resolution of 40 AU

 Self-gravity

 Aim: Following SF process over ~ 100 kyr – 200 kyr

 As a reference run: simulations without chemistry, isothermal EOS

 Including chemistry: KROME network for CO formation

 We use the react_COthin network



  

Chemistry

 Starting with ionized carbon (CII)

 42 species, 278 reactions, including CO, HCO+, H2O

 H2 formation on dust in parametrised form, dust temperature set to 10 K

 call krome_set_user_Tdust(10.)

 Ionisation by incident radiation (CR), ionisation rate set to 1.3 · 10-17 s-1

 call krome_set_user_crate(1.3e-17)

 KROME Heating and cooling mechanism:
 -cooling H2, CHEM, CIE, CI, CII, OI, OII, SiI, SiII

 -heating CHEM, PHOTODUST, (CR could be included)

 As well as own defined dust cooling

 Goldsmith ApJ 557, Eq. 15
 Does not require the usage of dust within KROME (memory saving)
 Similar to KROME method, but integrated over dust particles sizes



  

What about the ionising radiation?

 We do not use Tree-Col, but a simplified analytical proxy for the column 
density ∑ / extinction Av

 Consider a cylindrical symmetric setup

 Consider 6 rays: 2 parallel to axis, 2 „through“ axis, 2 „tangential“ to 
structure

 For a given density profile: ∑ along each direction can be calculated
 Use initial density distribution throughout the simulation

 Final ∑ is simply the average of the 6 rays

parallel

through axis

tangential



  

What about the ionising radiation?

 To set the exctinction: call krome_set_user_Av(„∑ [1/cm2]“ / 1.87d21)

 For the H2 self-shielding we assume that all hydrogen is in H2

 In code adapt: user_H2self  =  fselfH2(„∑ [1/cm2]“ * 0.5, 1d5)

 Caveats:

 H2 self-shielding overestimated

 No constant density profile over time

 Average over only 6 directions

parallel

through axis

tangential



  

Results

 Some technical details
 Simulation runs on SuperMUC at LRZ/Garching

 Use of 500 blocks/CPU, standard queue (~ 1.5 GB memory / CPU)

 Run for 20 h on 240 CPUs for the first 1 Myr, ~ 4800 CPU-h

 About 4 min for each timestep, ~ 300 steps in total

 About 8 times slower than without chemistry



  

Time evolution

 Edge-on collapse, condensations form first at outer parts

 In general for first 1 Myr: evolution similar to reference run 
without chemistry

Density Velocity



  

Results
Molecular hydrogenAtomic hydrogen

 In dense part: hydrogen 
almost completely in H2

 Gradial conversion H → H2 
along radial direction



  

 sd






Atomic carbon CO

Ionized carbon, CII

● Conversion from C+ → C 
→ CO
● Blocking of ionising radiation



  

Results
HCO+

 Also other more complex 
species like HCO+ seem to be 
reproduced reasonable well

 However: 
n(HCO+)/n(H2) ~ 10-11

 Observations: 10-9

 Missing something:
 Larger ionizing flux?

 Larger network?



  

Results

Usage of data for line transfer calculations:
 Required for comparison with observations

 Done in a postprocessing step

 CO-channel maps (RADMC-3D) reflect velocity structure



  

Intermediate summary

 The previous result show that
 In principle the usage of a complex chemical network is possible „on-the-

fly“

 On „normal“ machine (memorywise)

 However, computationally very expensive

 Reasonable results for most species



  

Chemistry via Postprocessing

 → What if we run the simulation without chemistry and apply 
KROME in a postprocessing step

 Main question 1: how long do we iterate KROME, i.e. for how 
long do we let the chemical network evolve?

 Until a chemical equilibrium is reached?

 As long as simulation has run to that point?

 Main question 2: How to model the thermal gas properties 
properly?



  

Chemistry via Postprocessing

 We use same network (react_COthin) and same (spatial 
dependent) proxy for extinction (Av) as before

 No cooling applied, dust and gas temperature set constant 
during KROME loop

 KROME postprocessing frontend:
 Read in all data of current snapshot

 Hand over density, temperature and Av to the main postprocessing 
routine (here called EquilibriumChemistry.F90)

 Further parameters: 

 Z (metallicity),
 dt_start (starting timestep)
 tmax (time until KROME is iterated)
 dtmax (optional)



  

Chemistry via Postprocessing

 subroutine EquilibriumChemistry(rho, T, Z, dt_start, tmax, n, ion_rate, 
opt_depth, dtmax)

 Determine hydrogen density n(idx_H) from rho

 call krome_scale_Z(n,Z)

  n(idx_Cj) = n(idx_C) , carbon is ionized rather than neutral

  n(idx_C) = 1.e-40

  n(idx_E) = krome_get_electrons(n(:))

  call krome_set_user_crate(ion_rate)

  call krome_set_user_Av(opt_depth)

  call krome_set_user_Tdust(10.)



  

Main iteration loop

dtC= dt_start, ttot = 0  

do while(ttot<tmax)
  ttot=ttot+dtC

    call krome(n(:),T,dtC)

 Relative changes in abundances:

    diff(:) = (n(:)-nold(:))/n(:)
    where(n .eq. 0) diff=0. ! just to avoid infinities and Nans in diff

 Next, we check whether we can use a larger timestep in next iteration
 threshold of 0.3 is variable, of course

    if(maxval(diff) .le. 0.3 .and. minval(diff) .ge. -0.3) dtC=min(2.*dtC,dtmax) 

    nold(:)=n(:)

  end do

 Write out whatever species you like!



  

Chemistry via Postprocessing

 OpenMP parallised around call to EquilibriumChemistry.F90

 First test:
 For radially average data, i.e. density, temperature as a function of 

distance from symmetry axis of filament

 For t_iteration  (tmax) = t_sim: 
agreement within factor of 2

 Slight dependence of atomic H density 
on iteration time

 n(H) decreases at t goes up



  

Chemistry via Postprocessing

CO atomic C ionized C

 Strong dependence of abundances on integration time
 Factor of 2 in integration time gives large differences > 10 x

 Integration time is a crucial parameter

 Still: For t_integration = t_sim reasonable agreement



  

Chemistry via Postprocessing

 Another source of error might be the averaging before 
postprocessing

 Apply postprocessing to „unaveraged“ data

 OpenMP parallelised around call to EquilibriumChemistry.F90

 First test:
 For about 10 Mio cells: about 15 h runtime with 80 threads

 probably speed up through clever subcycling 



  

Chemistry via Postprocessing

 In general: agreement within a factor of a few for:

 H,H2,C,CI,CII,HCO+

 in principle KROME as postprocessing tool usable

 But: careful testing required for
 each network

 different physical situtations

Even more complex molecules like 
HCO+ are reproduced well in 
postprocessing step!



  

Conclusions

 KROME can by used „on-the-fly“ even with a complex network
 40 species, 300 reaction

 Runs on standard machines with 1.5 GB memory / CPU

 Slow down by a factor of 8

 Applied to a collapsing filament
 Come up with a proxy for optical depth

 Reasonable results for carbon bearing species



  

Conclusions

 KROME can by used „on-the-fly“ even with a complex network
 40 species, 300 reaction

 Runs on standard machines with 1.5 GB memory / CPU

 Slow down by a factor of 8

 Applied to a collapsing filament
 Come up with a proxy for optical depth

 Reasonable results for carbon bearing species

 KROME as a postprocessing tool: it seems to work
 Iteration time is a critical parameter

 Reasonable agreement within a factor of 2

 Check beforehand by means of a reference run

 Applicability might depend on network



  

Thank you for your attention!
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