Problem 1: Chemical networks

Aims of this exercise

- 1 write a simple chemical network for water
- play around with the parameters
- 3 tokens and user functions
- use KIDA database

KROME Bootcamp 2015 - check the software

- ensure you have krome in your computer
- if not, clone the repository

```
(git clone https://stefanobovino@bitbucket.org/tgrassi/krome.git)
```

if you have KROME → git pull origin

KROME Bootcamp 2015 - Provided material on bitbucket

The material for the exercises is provided on a bitbucket repository.

Basic commands for cloning the repository

- http://bitbucket.org/tgrassi/krome-exercises-2015
- select a folder that you use for all your repositories (e.g. cd ~/repos/)
- or create it (e.g. mkdir ~/repos/)
- · clone the repository there

(git clone https://tgrassi@bitbucket.org/tgrassi/krome-exercises-2015.git)

KROME Bootcamp 2015 - Understanding the chemical network

$$H_2O^+ + H_2 \rightarrow H_3O^+ + H$$

 $H_3O^+ + e^- \rightarrow H_2O + H$

KROME Bootcamp 2015 - Preparing the chemical network

2 things worth knowing

- 1 provided file: networkH20.ntw
- 2 cosmic ray reactions depend on the CR flux

Part2

- TODO: add the missing reactions
- TODO: define a common variable $\xi_{cr} o @common$
- REMINDER: the common variables name → user_NAME

KROME Bootcamp 2015 - Run KROME and modify the test.f90 file

Part 3: Run KROME pre-processor

- n networkH2O.ntw
- WARNING!!! you're forming water but not destroying it (skip that)
- TODO: go into build/ and modify test.f90
- SUGGESTION: prepare a option file and run KROME with -options=OPTION_FILE_NAME
- do not forget -noExample option since now on!

KROME Bootcamp 2015 - modify the test.f90

Part 3 (cont'd): Initial conditions

- 1 $T_{gas} = 50 \text{ K}$, constant
- 2 $t_{end} = 10^6$ yr (use the spy variable to convert in seconds)
- 3 $n_H = n_{tot} = 10^8 \text{ cm}^{-3}$
- 4 $n_{H_2} = 0.1 n_{tot}$
- 6 oxygen?

the user module

- KROME provides a useful user module
- python list_user_functions.py to have a list
- krome_scale_Z used to obtain metal abundances based on Z/Z_{\odot}

KROME Bootcamp 2015 - pseudo-code

```
provided in the exercises sheet
```

```
initialize species and temperature
intialize cosmic rays flux with the function in krome_user
t =0
dt = 1e-2 yr
do
    dt = dt * 1.1
    t = t + dt
    call krome
    write output
    if(t>1e6 yr) break loop
```

Make and run KROME

end do

NOTE: if you use gnu compiler add the option

```
-compiler = gfortran or modify by hand the Makefile
```

Plot the H₂O time evolution and compare with Fig. 2 (left)!

KROME Bootcamp 2015 - reaction flux

Part 4: Key reaction rates

- each term of the RHS of the ODE system represent a reaction flux
- measures the "importance" of a reaction within a network, under given conditions.

$$A + B \rightarrow C$$
 regulated by $k_1(T)$

$$k_1(T)n_A n_B \tag{1}$$

In KROME \rightarrow subroutine krome_print_best_flux ranks the most important reaction fluxes.

KROME Bootcamp 2015 - add a reaction

Part 5: add a reaction

- use KIDA database (http://kida.obs.u-bordeaux1.fr)
- TODO: look for $H_2O + CRP \rightarrow H + OH$
- $k_i = \alpha_i \xi_{cr}$
- TODO: add the rate to your network file
- TODO: plot the OH abundance with and without this reaction

Search for species data	
Search by species	
Species*	
Formula (isomers) Exact formula Inchi code	
Search	
Ex : H2O, NaOH, C+ , InChI=1S/OS/c1-2 Warning : Second letter of 2-letters elements have to be lowercase, eg Na	
Search by element—	
Search by element Species contains the element *	
Species contains the element •	

)
•

KROME Bootcamp 2015 - play with parameters

Part 6a: simple sensitivity analysis

- REMINDER: use -noExample option to avoid to overwrite your test.f90 file
- TODO: change by an order of magnitude the cosmic rays flux
- TODO: compare the results

Part 6b: massive sensitivity analysis

- TODO: change the first three auto reactions
- new rates: $k_i = c_i \varphi_i$
- as for ξ_{cr} use @common token and the corresponding user function to define and initialize the new three variables φ_i
- $\varphi_i = dex(2 \times rand() 1)$

GOOD WORK!