Credits: Krome School 2015 Exercises Problem 2 (continued)

Problem 3: Stromgren sphere

This problem will show you how to use the main photochemistry commands in KROME. It consists of a 1D
radial model of a Stromgren sphere and a star as a central source of ionizing radiation. The evolution will be
calculated using a very simple operator splitting method (very inefficient!) to maintain focus on the chemistry.

Part 1: Basic chemical network
The chemical network here is pretty simple, being composed of only two reactions, namely H recombination
and photoionization:

1. Ht+e = H + ~

2.H+~v—> H+e”
As a first step, we have to indicate to KROME that the second reaction is photochemical. To do this, you
should wrap the reaction in a block delimited by the tokens @photo_start and @photo_end. When you
indicate to KROME that a reaction is photochemical, the

¢

‘rate” you put in the network file is actually a
cross-section that KROME will internally convert to a rate coefficient for you. The cross-section for the pho-
toionization reaction used here will be approximated by o (E) = 6.3 x 1078 [E/(13.6eV)] ™ ¢cm?. Do not
forget that KROME’s photochemistry works in eV and the KROME variable for E is energy_eV. The recom-
bination rate can be indicated with auto, as in previous exercises.

Part 2: Using photobins

“Photobins” are what you get when you split a spectral energy distribution (SED) into a finite number of
discrete bins. In this case, the SED we are splitting belongs to the central radiation source. To use photo-
bins, you should add the option -photoBins NBINS, where NBINS represents the number of photobins used
to discretize the radiation spectrum. However, we are only interested in a narrow region around 13.6 eV, and
for this reason we set -photoBins=1. After running the KROME python, you should find the pre-processed
files in the build/ folder, including the test.f90 file that will be edited in the next section.

Part 3: Main file (no photochemistry)

We wish to understand what happens when a stellar source is embedded in a gas cloud of constant density,
Mot = 1072 em 3. The extent of the 1D domain will be L = 6.6 kpc (1 pc = 3.085 x 10'® cm), represented
by a linearly and equally spaced grid of ngrid=300 points. The position of the ith grid point, r, is given by:

r = (i-1)*(rmax-rmin)/(ngrid-1) + rmin

where rmin=1 pc and rmax=L, i.e., the first point is at 1 pc and we assume that the size of the cell, Ar,
corresponding to this grid point is also 1 pc. Model results are represented by a 2-dimensional array that
contains the chemical species at each grid point: xall(ngrid, krome_nmols). The initial conditions are
Toos = 10* K, ng = Not, and nyg+ = Ne— = 1.2 x 1073 nyos.

To simplify the exercise, we use an explicit solver and supply a test.f90 template file that you can build
on. The backbone of the solver is a loop over spatial grid points nested in a loop over time steps:

initialize chemistry for all grid points

dt = 0.1 yr // default time-step
LOOP on time points
dt = dt * 1.01 // increase time-step
t =t +dt // advance total time

LOOP on grid points using loop variable i
x(:) = xall(di,:) // store species array for ith cell
call KROME(x(:),Tgas,dt) // advance chemical evolution by a time-step
xall(i,:) = x(:) // copy evolved local array to global array
END LOOP on grid points
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if (t>tmax) break loop on time // exit loop when end time exceeded
END LOOP time

//save data as a function of radius

LOOP on grid points using loop variable i
write xall(i,:) to file

END LOOP on grid points

where t0. = 3 x 107 yr.

Part 4: Add photochemistry (optically thin)

The pseudo-code in the previous step calculates the chemical evolution at each grid point without any
radiation. Now we want to add a stellar source at r = 0 given by a black-body with T, = 3 x 10* K
(mimicking a BO star) and radius R,=66.1 Ry (Rs = 7 x 10'° cm), corresponding to an emission of
~5 x 108 photons/s. The emission is assumed isotropic. The energy range we are interested in is between
13.6 and 13.8 eV. To make KROME aware of this, you can use the subroutine krome_set_photoBin_BBlog
(as usual, more information is available from list_user_functions.py) to initialize a black-body spectrum
with logarithmically spaced photobins in a range indicated by the arguments (it does not actually matter
here since we are using just one bin).

The stellar radiation is emitted by a star of radius R, and has a geometrical dilution factor that is proportional
to 1/r?, and thus a rescaling factor n, = 47?R?/(47r?). However, KROME internally already multiplies the
radiation by a factor 47 (it assumes isotropy), so that we actually need n, = wR?/(47r?) = R?/(4r?).

To rescale the stellar flux, use the subroutine krome_photoBin_scale(xscale), which multiplies the spec-
trum by a factor xscale, at every grid point. In this case, xscale is 1,. The rescaling is not progressive
(it depends on r, which is an absolute quantity), and so, at each grid point, you need to “restore” the
initialized spectrum before scaling it. In KROME, photochemical initialization functions automatically store
the spectrum and, more importantly, it can be restored by using the subroutine krome_photoBin_restore().

To recap, the algorithm including the new parts is as follows:

initialize black-body spectrum
LOOP on time points
LOOP on grid points using loop variable i
restore spectrum
calculate eta_g
scale spectrum by eta_g
call KROME
END LOOP on grid points
END LOOP time

If you compile with Makefile and run the executable, you should obtain Fig. 7 (left).

Part 5: Add photochemistry (optically thick)

In the optically thick case, the photochemistry at lower radii reduces the flux of photons at the next grid
point (i.e., at larger radii). This reduction in flux is represented by the opacity. You can determine this
quantity for a grid cell of size Ar by using the krome_get_opacity_size function, which returns an array
of size krome_nPhotoBins containing the opacity 7(E) for each photobin. You should apply this reducing
factor at every grid point progressively, i.e., the ith point will have an energy-dependent scaling factor
ni(E) = Hj':o exp[—7;(F)], where the product runs from the first to the ith cells.

As the scaling is energy dependent, you should replace the function krome_photoBin_scale(xscale),
used in part 4, with krome_photoBin_scale_array(xscale(:)) that accepts an array of doubles of size
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Figure 7 — Expected results for problem 3. Left: part 4; right: part 5.

krome_nPhotoBins as an argument which, in this case, is 74 X 17;(E).

Again, to recap, the algorithm for the optically thick case is as follows:

initialize black-body spectrum
LOOP on time points
eta_i(:) = 1.
LOOP on grid points using loop variable i
restore spectrum
eta_i(:) = eta_i(:)*exp(-opacity(:))
calculate eta_g
scale spectrum by eta_g*eta_i
call KROME
END LOOP on grid points
END LOOP time

If you compile with Makefile and run the executable, you should obtain Fig. 7 (right).
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