Interstellar radiation, cosmic rays and their impact on the chemical evolution of star forming filaments

Daniel Seifried I. Physikalisches Institut, University of Cologne

KROME Computational school 22.7.2015, Copenhagen

Outline of the talk

- Heard a lot about:
 - theoretical background
 - how to setup KROME and basic usage
- Now: some application/experience from a (astrophysics) user
 - problems (of course there are none!), advantages (only!)
 - own modifications applied
 - details about usage + coupling to FLASH code (see also exercise)
- Code parts will be printed red
- physical + numerical results

FLASH code

- Astrophysical code to simulate 3D, magneto-hydrodynamical problems
- Uses Adaptive-Mesh-Refinement to resolve regions of interest with higher spatial resolution
- Block structure: Simulation domain divided in blocks/patches consisting of 8^3 cells
 - A block resides on one CPU in total (reducing communication)
 - Each block can be divided into 8 smaller blocks with half the linear size
- FLASH is designed in a modular fashion:
 - Each module covers some physical process
 - Modules can be used individually or in combination
 - \rightarrow Chemistry can easily be in-/excluded

FLASH modules

- Self-gravity:
 - Multigrid
 - Tree-code (usually faster by a factor of a few)
- Sink particles
 - Lagrangian particles accreting/ejecting mass
 - Interacting only gravitationally with gas
- Stellar feedback models (coupled to sinks)
 - Protostellar outflow, supernovae, stellar winds
- Radiative feedback of ionising and non-ionising radiation (optically thin gas)

TreeCol: for (self-) shielding

TreeCol

- Tree-Col developed by P. Clark and R. Wünsch (Clark et al., 2012):
 - Calculates the mean optical depth / column density for each cell
- Makes use of the Healpix tool:
 - Divides sphere in regions of equal size
 - Calculates column density along each direction
 - Averages over all directions
 - Usually already 12 pixels are sufficient to receive accuracy of 10%

Picture taken from http://healpix.jpl.nasa.gov/

- Here 48 pixels are used
- We get: AV, H₂ self-shielding, CO column density N_{CO} ...
 - Essential for chemistry to obtain proper ionisation + heating rates by incident radiation

Simulating interstellar filaments

- Filaments seem to be everywhere: "Filamentology"
- SF takes places in dense cores lining up along filaments
- Typical properties:
 - width of 0.1 pc
 - pervaded by magnetic fields
 - flat inner density part, at larger distances density falls off as r⁻²

Palmeirim et al. 2013

Simulation setup

- Simulating filaments
 - Mass per length: 25 and 75 M_{sun}/pc
 - Central density of ~ 10^{-19} g/cm⁻³, T = 15K
 - Without and with magnetic fields
 - Perpendicular and parallel to filaments, strength: 40 muG
 - Turbulent motions with $M_{rms} \sim 1$
 - Width ~ 0.1 pc, length 1.6 pc

Physics applied

- Run with FLASH4, using
 - sink particles, possible without any further modifications
 - Spatial resolution of 40 AU
 - Self-gravity
 - TreeCol
- Following SF process over ~ 300 kyr
- We use either:
 - No chemistry, isothermal EOS
 - Chemistry for CO formation

Chemistry in present day SF

- Heard about chemistry in simulation of POPIII star formation
 - "Relatively" simple: includes only light atoms, (almost) no metals
 - Computational costs are "moderate"
- For present day star formation (SF) metals + dust chemistry have to be included
- This makes chemistry unproportionally more expensive
 - Number of rate equations scales roughly as N² (N = number of species)
- Even for the most abundant (and simple) molecule CO
 - ~ 40 species
 - ~ 300 reaction

- We use the react_COthin network
 - 37 species, 287 reactions, including CO, HCO+, H₂O
 - Abundances initialized with freeze-out taken into account (Flower et al. 2005)

e ⁻	Н	H^+	H^{-}	H_2	H_2^+	H_3^+	He	He^+	He^{2+}	С	C^+	C^{-}	C_2
CH	CH^+	CH_2	CH_2^+	CH_3^+	õ	0 ⁺	O-	O_2	O_2^+	OH	OH^+	H_2O	H_2O^+
H_3O^+	HCO	HCO^+	$HO\bar{C}^+$	CŎ	CO^+	Si	Si^+	Si^{2+}	-				

Element	mass fraction	fractional abundance
Н	7.18(-1)	1
He	2.79(-1)	9.73(-2)
C^+	7.13(-4)	8.27(-5)
O	1.42(-3)	1.24(-4)
Si	6.78(-5)	3.37(-6)

- There is a nice tool in KROME to graphically represent (parts of) the network:
 - in the tools/ folder: pathway.py script
 - ./pathway any_network figure.eps <species>
 - <species>: gives a subselection of the network showing reactions including <species> as a reactant/product
 - graphviz package must be installed
 - sudo aptitude install graphviz
 - e.g. ./pathway.py react_COthin C-figure.eps C gives

Cosmic rays and ISRF

- We want to investigate impact of interstellar radiation field (ISRF) and cosmic rays (CR)
- Ionisation by incident CR:
 - In Krome: variable crate set to $1.3 \cdot 10^{-17}$ s⁻¹ and $1 \cdot 10^{-16}$ s⁻¹ (to account for uncertainties)
 - In KromeChemistry_init: call krome_set_user_crate(crate)
- Strength of ISRF:
 - In network react_COthin: create new variable Ghab
 - Correct all reactions depending on Ghab by Ghab/1.7
 - Ghab set to 1.7 and 8.5,
 - In KromeChemistry_init: call krome_set_user_Ghab(Ghab)
- Strength of ISRF evaluated in each cell by attenuation (TreeCol)

- H₂ formation on dust in parametrised form, dust temperature self-consistently from simulation
 - Before EACH krome call: call krome_set_user_Tdust(t_dust)
- Optical depth AV, H₂ self-shielding, and CO column density self-consistently from TreeCol
 - Before EACH krome call: call krome_set_user_Av(AV)
 - Before EACH krome call: call krome_set_user_H2self(H2self)
 - Before EACH krome call: call krome_set_user_NCO(NCO)
- useN: KROME by default uses number densities
 - Flash uses mass fractions
 - Make sure that conversion is done properly!
 - Use same masses of species as stored in KROME

- three further options:
- -compact:
 - summarizes all Krome functions in krome_all.f90
- -gamma full:
 - use individual gammas for different species
 - check that your code does the same
- -flash:
 - make interface for Flash
 - just copy folders/code to Flash source code

Take a breath...

- Hydrodynamics taken care of by Flash
- "Chemistry" by using network react_COthin
- Radiation by TreeCol (+ KROME)
- Missing description of thermal evolution

Cooling processes

- KROME cooling mechanisms:
 - cooling H2, CHEM, CIE, CI, CII, OI, OII, SiI, SiII, CO
 - For CO: N_{CO} required \rightarrow from TreeCol (new variable user_NCO)
 - In code set v3 = user_NCO
 - CO cooling from ¹³CO and C¹⁸O included
 - Necessary if gas gets optically thick for ¹²CO
 - Scale user_NCO and resulting cooling rate by 1/69 and 1/557
 - -coolingQuench 10: terminates cooling below 10 K

Cooling processes

- KROME cooling mechanisms:
 - For dust: own defined cooling routine
 - Does not require the usage of dust within KROME (memory saving)
 - Integrated over dust particles sizes

 $\Lambda_{\rm coll}(T_{\rm dust,eq}) + \Gamma_{\rm ISRF}(T_{\rm dust,eq}) \stackrel{!}{=} \Lambda_{\rm BB}(T_{\rm dust,eq})$

 \rightarrow Calculated once before Krome call to calculate Tdust \rightarrow set user_Tdust

$$\Gamma_{\rm ISRF} = 5.8 \times 10^{-24} \,\chi \,n_{\rm H,tot} \,G_0 \,\rm erg \, s^{-1} \, cm^{-3} \,.$$

$$\Lambda_{\rm BB}(T_{\rm dust}) = 4.68 \times 10^{-31} T_{\rm dust}^6 \, n_{\rm H,tot} \, {\rm erg \, s^{-1} \, cm^{-3}} \, .$$

$$\Lambda_{\rm coll}(T_{\rm dust}) = 2 \times 10^{-33} n_{\rm H_2}^2 \sqrt{\frac{T_{\rm gas}}{10.0}} (T_{\rm gas} - T_{\rm dust}) \, \rm erg \, s^{-1} \, \rm cm^{-3}$$

 \rightarrow Last term affects gas + dust: Also used during Krome evaluation as additional gas cooling process

Heating processes

- KROME heating mechanisms:
 - -heating CHEM, CR, PHOTODUST
 - For PHOTODUST set Ghab = user_Ghab * exp(-2.5 user_AV)

• To summarize: KROME set up with:

```
./krome -n react_COthin -heating CHEM,CR,PHOTODUST
-cooling H2,CHEM,CIE,CI,CII,OI,OII,SiI,SiII,CO
-coolingQuench 10 -gamma FULL -useN -compact
-flash
```

FINALLY: Time for some MOVIES

Time evolution

- Edge-on collapse, condensations form first at outer edges, gravitational focussing (Pon et al. 11)
- Fragmentation properties depend on magnetic field configuration and mass of the filaments
- Filaments get rather narrow (< 0.1 pc) \leftrightarrow observations

Results

- So far we have considered runs without chemistry
- Problems with IC
 - Unavoidable for every kind of simulation
 - Even more severe for simulations including chemistry:
 - With which chemical configuration do we start
 - Chemical equilibrium? → probably better choice than "random" ICs
- Start with purely atomic species (carbon in C⁺ instead of C)
- Relax for 500 kyr
 - Hydrodynamics not evolved
 - Sufficient to reach rough chemical equilibrium
 - 500 kyr ~ H_2 formation time at n = 10⁵ cm⁻³

Results

T = 0 (after relaxation)

T = 300 kyr

- In center of the filament
 - hydrogen mainly in form of H₂
 - Carbon almost completely in CO
- Impact of turbulent motions recognisable

Results of TreeCol

- Optical depth increasing strongly towards center
- CO column density between 10¹⁶ and 10¹⁹ cm⁻²

Time evolution of radially averaged quantities

- Increase of H₂, H, and CO over time
- H⁺, C, and C⁺ remain rather unchanged
 - Quick conversion into other species
- Wit decreasing radius: Gradual conversion of $H^+ \rightarrow H \rightarrow H_2$ and $C^+ \rightarrow C \rightarrow CO$

Impact of ISRF and CR

- Increasing CR ionisation rate:
 - Higher abundances of H⁺ and C⁺ (1 2 order of mag.)
 - Slightly increased gas temperature due to energy released by dissociation reactions

Impact of ISRF and CR

- Increasing ISRF:
 - Chemical composition only marginal affected
 - Gas + dust temperature increase by a few K due to enhance PE heating
- Note: Gas and dust temperature are markedly different

EOS

- KROME allows to accurately describe thermal evolution of gas and dust
- Palmeirim et al. 2013 found decrease of T_{dust} towards center
 - Similar do we
- Fit of polytropic EOS: T ~ ρ^{γ} 1
- $\rightarrow \gamma = 0.97$

Palmeirim et al 2013

EOS

• $\gamma = 0.90 - 0.95$

- Independent of CR and ISRF
- In reasonable agreement with observations

CO-H₂ conversion factor

- Often a fixed conversion between CO and H2 is assumed
 - Around 10⁻⁴
- Good agreement in central region
- Drop by 2 orders of mag. in outer regions
- Affect of ISRF and CR mainly in outer regions
- Variation affects X-factor
 - Caution when converting CO line intensities to gas masses

Synthetic observations – Preliminary results

- Usage of data for line transfer calculations:
 - CO-channel maps (RADMC-3D) reflect velocity structure

time = 3.1680e+13 s number of blocks = 18611 AMR levels = 6

Numerical performance

- Some technical details
 - Simulation runs on SuperMUC at LRZ/Garching, + JUROPA in Juelich
 - Use of 500 blocks/CPU, standard cpus (~ 1.5 GB 3 GB memory / CPU)
- Numerical costs:
 - Measured against a simulation without any chemistry
 - naturally some small (unavoidable) differences
 - Computational cost increased by a factor of 7

Conclusions

- KROME can by used "on-the-fly" even with a complex network
 - 37 species, ~ 300 reactions
 - Runs on typical machines with 2 GB memory / CPU
 - Slow down by a factor of 7
- Applied to a collapsing filament
 - Promising physical results
- Potential for future applications
 - Synthetic observations
 - Compare "observed" filament width with "real" (3D) width
 - Constrains on the X-factor
 - Inclusion of nitrogen chemistry (necessary for important tracers)